Analyzing the Impacts of the Status of Automobiles on Repair
Records — A Python Programming Exercise for Ordinal Response
Models

April 8, 2024

Code contributor: Ziyue Wang (Third Year Undergraduate Student of IESR of Jinan University)

1 Introduction

1.1 Main Focus and Dataset

This exercise aims to examine how different characteristics of automobiles impact their repair
records. The “fullauto” dataset provided in the supplemental material contains repair records
of automobiles along with various characteristics of these automobiles, and will be used for this
cross-sectional analysis. “fullauto” contains the following main variables:

o The dependent variable rep77 measures the repair record of the automobile in 1977. The
variable take 5 possible ordinal values {1, 2, 3, 4, 5} which respectively represent the repair
record of the car is: poor, fair, average, good, and excellent.

o There are 11 key independent variables and I choose to focus on: foreign (domestic or foreign
car), length (measured in inches), and mpg (miles per gallon, a measure of fuel efficiency).

The key independent variables that I am focusing on may have potential implications in three areas:

1. Consumer Decision-Making: Consumers might consider a car’s origin, size, and fuel
efficiency when making a purchase decision. However, from consumers aspects, they may
tend to overlook the repair record of a car, which is a critical indicator of its reliability and
potential future costs.

2. Policy Implications: For example, if larger or less fuel-efficient cars have worse repair
records, policies could be implemented to promote the production and purchase of smaller,
more fuel-efficient cars.

3. Manufacturer Strategies: For instance, manufacturers could focus on developing more
fuel-efficient technologies if fuel efficiency is found to be a significant factor for better repair

records.

1.2 Econometric Methods

Regarding the econometric method, I employ the ordered logit (a.k.a. ordinal logistic) regression.
Using the ordinal response model, one can estimate the probability of the repair record being in a

certain category or lower, based on the explanatory variables. The model can be formulated as
Pr(rep77; = jlx;, B,a) = Aoy, + B'x;) — Aoy + B8'%;)
for any ¢ € {1,...,n} and j € {0,1,2,3,4}, where

o f'x; = By foreign; + Bylength; + Bsmpy;,

o A(.) is the CDF function of the standard logistic distribution (a.k.a. the sigmoid function in
the machine learning context),

e and a = (a_q,...,a,)" refers to the cutoff points.

Please kindly note that, for the purpose of Python programming convinience, I have recoded the
numerals of the dependent variable from {1, 2, 3, 4, 5} to {0, 1, 2, 3, 4}. Additionally, for the
econometric identification, the smallest and the largest cutoff points are anchored at —oo and oc.
These will be reflected when I manually codifying the MLE estimation in Python.

Here, I chose the logit link (instead of the probit one) for my analysis as it was more technically
challenging to implement in Python programming. When a variable has a large support, using it in
the exponential function of the logistic CDF can lead to numerical issues. The exponential function
grows exponentially, and with somehow large values, it can exceed the capacity of Python installed
on a conventional personal computer. As a result, the estimation can fail in Python — numerically.

Apart from solely estimating the model parameters and conducting regular inferences, I will also
calculate the marginal effects by calling Stata from Python to obtain meaningful economic inter-
pretations.

1.3 Challenges in Python Programming
While programming in Python, I encountered three main challenges:

1. The repair records variable is documented as an ordinal variable. To analyze it in Python,
one needs to utilize Python’s statsmodels package. However, the statsmodels package
(until the current version) does not contain a robust routine for estimating the cutoff points
(in which the reparameterization is done). Therefore, manual coding based on econometric
formulae is possibly required.

2. Based on the above mentioned reason, it is very helpful to use the Python-Stata integration to
call Stata and verify my estimates. Even though I have already computed the marginal effects,
the standard errors for these marginal effects require delta methods to be approximated, which
seems technically difficult. Therefore, calling Stata in Python to fulfill this task becomes a
natural solution.

3. The manual programming of maximum likelihood estimation for the ordinal response is chal-
lenging as the log-likelihood surface may not be alway concave (especially when applying the
real data). In real analysis, one needs to seriously account for the numerical issue.

In what follows,

e I start with importing data and then clean it up to prepare it for Python analysis.

e In the descriptive analysis, I generate summary statistics and graphs to get a general sense
of the data.

e When it comes to the econometric analysis in Python, I use a combination of methods in-
cluding

[1]:

[1]:

[2]:

— the existing statsmodels routines to compute model parameter estimates,
— manually coding up the negative log-likelihood and conducting scipy’s optimization

routine to perform maximum likelihood estimation (MLE),
— checking the global concavity of the log-likelihood curve,

— applying the bootstrap method to compute standard errors — in a different way,

— generating various plots to visualize estimation results,
— and calling Stata from Python to implement the task.

2 Data Cleaning

Please note that the raw data file is saved in Stata’s .dta format. I import the data and check for
any possible missing values. It is important to identify and address missing values at the outset, as
they can cause manual Python programming to fail. This is why I prioritize checking for missing

values at the beginning of this exercise.

import pandas as pd

Read Stata format datafile in Python
data=pd.read_stata("fullauto.dta")

Drop the missing values

data = data.dropna(subset=['rep77'])

category_rep = {'Poor': 1, 'Fair': 2, 'Average': 3, 'Good': 4,
category_origin = {'Foreign':1, 'Domestic':0}
datal['rep77'] = datal['rep77'].replace(category_rep)
datal['rep78'] = datal['rep78'].replace(category_rep)
data['foreign'] = datal['foreign'].replace(category_origin)
data.head ()

make model price mpg rep78 rep77 hdroom rseat trunk
0 AMC Concord 4099 22 3 2 2.5 27.5 11
1 AMC Pacer 4749 17 3 1 3.0 25.5 11
3 Audi Fox 6295 23 3 3 2.5 28.0 11
4 Audi 5000 9690 17 5 2 3.0 27.0 15
5 BMW 320 9735 25 4 4 2.5 26.0 12

length turn displ gratio order foreign wgtd wgtf
0 186 40 121 3.58 1 0 2930.0 NaN
1 173 40 258 2.53 2 0 3350.0 NaN
3 174 36 97 3.70 5 1 NaN 2070.0
4 189 37 131 3.20 4 1 NaN 2830.0
5 177 34 121 3.64 6 1 NaN 2650.0

3 Descriptive Analysis

'Excellent': 5}

weight \
2930
3350
2070
2830
2650

As the data is imported in this running Python instance as a Pandas’ DataFrame object, to have
a general understanding of the data structure, I apply the next Python Pandas function.

data.info()

[3]:

[3]:

<class 'pandas.core.frame.DataFrame'>

Int64Index:

66 entries, O to 73

Data columns (total 18 columns):
Non-Null Count Dtype

#

© 0 N O O b W N+~ O

= o
= O

e
o O b W N

17

Column

hdroom
rseat
trunk
weight
length
turn
displ
gratio
order
foreign
wgtd
wgtf

66 non-null category
66 non-null category
66 non-null int16

66 non-null int16

66 non-null category
66 non-null category
66 non-null float32
66 non-null float32
66 non-null int16

66 non-null int16

66 non-null int16

66 non-null int16

66 non-null int16

66 non-null float32
66 non-null int16

66 non-null category
45 non-null float32
21 non-null float32

dtypes: category(5), float32(5), int16(8)
memory usage:

7.0 KB

It is important to check the maximum and minimum values of each variable used in the analysis.
This is because if the variable has a somehow large range, using it in the exponential function of
the logistic CDF can cause numerical issue. This is because the exponential function increases
in a geometric order, and with very large values, it can easily exceed the limits of Python. This
can cause the estimation to fail numerically.

The table of summary statistics is produced by the next command.

data.describe()

price
count 66.000000
mean 6222.575758
std 2955.821115
min 3291.000000
25% 4189.000000
50% 5138.000000
75% 6332.250000
max 15906.000000

length

count

66.
21.

12.
17.
20.
24.
41.

66.000000 66.000000

mpg hdroom
000000 66.000000
333333 3.007576
.207522 0.843493
000000 1.500000
250000 2.500000
000000 3.000000
000000 3.500000
000000 5.000000
turn displ

66.
27.

21.
25.
27.
29.
37.

rseat
000000
083334
.026274
000000
125000
000000
000000
500000

gratio

66.
13.
.381355
.000000
11.
15.
17.
23.

trunk
000000
939394

000000
000000
000000
000000

order

66.000000 66.000000 66.000000

66.
3058.
788.
1760.
2302.
3205.
3685.
4840.

weight \
000000
181818
144675
000000
500000
000000
000000
000000

wgtd \

45.000000

[4] :

mean 189.
std 22.
min 142.
25% 170.
50% 194.
75% 205.
max 233.
count 21.
mean 2263.
std 364.
min 1760.
25% 2020.
50% 2160.
75% 2410.
max 3170.

121212
463314
000000
500000
000000
500000
000000

wgtf
000000
333252
709930
000000
000000
000000
000000
000000

39.
.433713
31.
36.
40.
43.
51.

939394

000000
000000
500000
000000
000000

200.
93.
79.

119.

198.

245.

425.

136364
508516
000000
500000
000000
250000
000000

W W NNDNOW

.000000
.465301
.190000
. 730000
.930000
.282500
.890000

37.
21.
.000000
19.
36.
54.
4.

227273
528368

250000
500000
750000
000000

3429.

644.
1800.
3200.
3400.
3830.
4840.

Next scripts generates figures for getting a sense of the distribution of the data.

import matplotlib.pyplot as plt

import seaborn as sns

Distribution of Repair Record
plt.figure(figsize=(10, 6))

sns.histplot(data=data, x='rep77')
plt.xlabel('Repair Record', fontsize = 14)
= 14)

plt.ylabel('Frequency', fontsize

plt.title('Repair Record of Cars in 1977', fontsize

plt.grid()
plt.show()

Comparison between Domestic and Foreign Cars
plt.figure(figsize=(10, 6))
sns.countplot(x='rep77', hue='foreign', data=data)
plt.title('Comparison of Repair Records for Domestic and Foreign Cars',

~fontsize

plt.xlabel('Repair Record in 1977', fontsize
= 14)

= 14)

plt.ylabel('Frequency', fontsize
plt.legend(title='Car Orign', labels=['Domestic', 'Foreign'])

plt.grid()
plt.show()

Comparison between Car Size

plt.figure(figsize=(18, 6))
sns.countplot(x='length', hue='foreign', data=data)
plt.title('Comparison of Length for Domestic and Foreign Cars', fontsize =
= 22)

plt.xlabel('Length', fontsize

= 14)

14)

111084
151428
000000
000000
000000
000000
000000

22)

plt.ylabel('Frequency', fontsize = 22)

plt.legend(title='Car Orign', labels=['Domestic', 'Foreign'])
plt.grid()

plt.show()

Comparison betweem Fuel Efficiency

plt.figure(figsize=(10, 6))

sns.countplot (x='mpg', hue='foreign', data=data)

plt.title('Comparison of Miles per Gallon for Domestic and Foreign Cars',,
~fontsize = 14)

plt.xlabel('Miles per Gallon', fontsize = 18)

plt.ylabel('Frequency', fontsize = 18)

plt.legend(title='Car Orign', labels=['Domestic', 'Foreign'])

plt.grid()

plt.show()

Repair Record of Cars in 1977

25

20

=
w

Frequency

=
(=]

1 2 3 4 5
Repair Record

Comparison of Repair Records for Domestic and Foreign Cars

20.04 Car Orign
BN Domestic
S Foreign
17.5

15.0

12.5

Frequency
=
o

=
in

5.0

2.5

0.0 -
1 2 3 4 5

Repair Record in 1977

Comparison of Length for Domestic and Foreign Cars

40 Car Orign
B Domestic
W Foreign

30

~
i«

Frequency

=
n

0.0+
142 149 154 155 156 157 161 163 164 165 169 170 172 173 174 175 177 179 180 184 186 189 193 195 196 197 198 199 200 201 204 206 207 212 214 217 218 220 221 222 230 233

Length

[5]:

Comparison of Miles per Gallon for Domestic and Foreign Cars

7 Car Orign

B Domestic
W Foreign

Frequency
I A R
I
I
I
—

12 14 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 34 35 38 41
Miles per Gallon

Above four plots give basic information about the reliability, size, and fuel efficiency of domestic
and foreign cars in 1977. The first plot shows the distribution of the repair records for cars in
that year, and the second plot compares the repair records of domestic and foreign cars, helping us
understand if there are any significant differences in their reliability unconditionally.

The third plot compares the lengths of domestic and foreign cars. Moreover, the last plot compares
the miles per gallon (mpg) of domestic and foreign cars, helping us understand if there is a significant
difference in their fuel efficiency.

From the descriptive analysis, it is concluded that foreign cars tend to have better repair records
than domestic cars. This observation may be attributed, in part, to their smaller size, as measured
by car length, and superior fuel efficiency, as measured by miles per gallon.

Even though, to gain a more comprehensive understanding of these findings, we need to look deeper
into the matter and justify the assumptions by the next econometic modelling.

Next code is contributed by Yuming Zhang (3rd yr UG student of IESR). The code draws 3D plots
of variables as stylzed examples.

import numpy as np
from mpl_toolkits import mplot3d

fig = plt.figure(l, figsize=(10, 6))
ax = plt.axes(projection='3d"')

Draw a 3D plan of the length and weight distribution

ax.plot_trisurf(datal'length'], datal['weight'], datal'rep77'],cmap=plt.cm.
~Spectral_r)

Set scale and azis labels
ax.set_xticks(np.arange(165, 240, step=25))
ax.set_yticks(np.arange (2500, 5000, step=500))
ax.set_zticks(np.arange(0, 5, step=1))
ax.set_xlabel("Length")
ax.set_ylabel("Weight")

ax.set_zlabel("Level of repair record 1977")

Adjust the angle of the 3D image
ax.view_init(elev=30, azim=140)

Save the 3D image - with DPI of 600
plt.savefig("3Dplot.png", dpi = 600)
plt.show()

fig = plt.figure(l, figsize=(10, 6))
ax = plt.axes(projection='3d"')

Draw a 3D image of the price and mpg distribution
ax.plot_trisurf(datal'price'], datal'mpg'], datal'rep77'],cmap=plt.cm.
~Spectral_r)

Set scale and azis labels
ax.set_xticks(np.arange (3000, 16000, step=2000))
ax.set_yticks(np.arange(10, 50, step=10))
ax.set_zticks(np.arange(0, 5, step=1))
ax.set_xlabel ("Price")

ax.set_ylabel("Mpg")

ax.set_zlabel("Level of repair record")

Adjust the angle of the 3D image
ax.view_init(elev=30, azim=160)

Save the 3D image and display it with a clarity DPI of 600
plt.savefig("3Dplot.png", dpi = 600)
plt.show()

LL6T pl40odaJ Jieday JLNEYEY]

=]
4 5
wr
v
3 =
(18}
o
2 O
[=]
1 ¢
9
0

30
a0 Mpg

3000

3.1 Python-Stata Integration

Python-Stata integration can be activated on my laptop by executing:

Essential packages
pip install pystata
pip install stata_setup

(installation processes are omited)

Configurations
import os os.chdir('E:/Statal7/utilities')

import sys sys.path.append('E:/Statal7/utilities')
from pystata import config config.init('mp')
Then the next code uses Stata to produce some data cleaning operations as well as the generating

the table of summary statistics and return results in Python.

[6]: from pystata import stata
Run a selection of Stata code

11

stata.run(
""'clear all
sysuse fullauto
misstable summarize
drop <f rep77==.
drop if rep78==.

sum price rep77 rep78 foreign

/ / /7

Statistics and Data Science

Stata license: Single-user 8-core

Notes:

N =

. clear all

sysuse fullauto
(Automobile Models)

misstable summarize

Variable Obs=
rep78 | 5
rep?7 | 8

wgtd | 22
wgtf | 52

length weight''')

17.0

Copyright 1985-2021 StataCorp LLC

StataCorp

MP-Parallel Edition

4905 Lakeway Drive

979-696-4600

College Station, Texas 77845 USA
800-STATA-PC

https://www.stata.com

stata@stata.com

. Unicode is supported; see help unicode_advice.
. More than 2 billion observations are allowed; see help obs_advice.
3. Maximum number of variables is set to 5,000; see help set_maxvar.

Unique
values

drop if rep77==.
(8 observations deleted)

12

drop if rep78==.
(0 observations deleted)

sum price rep77 rep78 foreign length weight

Variable | Obs Mean Std. dev Min Max
_____________ o
price | 66 6222.576 2955.821 3291 15906

rep77 | 66 3.19697 .9642805 1 5

rep78 | 66 3.409091 1.007316 1 5
foreign | 66 .3181818 .4693397 0 1
length | 66 189.1212 22.46331 142 233
_____________ e
weight | 66 3058.182 788.1447 1760 4840

4 Econometric Analysis

4.1 Using statsmodels Commands

Based on the methodology stated in Section 1, first, I estimate the model parameters using
statsmodels to yield preliminary findings.

[16] : import statsmodels.api as sm
from statsmodels.miscmodels.ordinal_model import OrderedModel
import locale
locale.setlocale(locale.LC_ALL, 'C'")

X = datal[['foreign', 'length', 'mpg'l]

y = datal['rep77']

model = OrderedModel(y, X, distr='logit')
result = model.fit(method='bfgs"')

print (result.summary())

Optimization terminated successfully.
Current function value: 1.185617
Iterations: 32
Function evaluations: 37
Gradient evaluations: 37
OrderedModel Results

Dep. Variable: rep77 Log-Likelihood: -78.251
Model: OrderedModel AIC: 170.5
Method: Maximum Likelihood BIC: 185.8
Date: Mon, 08 Apr 2024
Time: 23:03:33

13

[17]:

[19]:

No. Observations: 66

Df Residuals: 59
Df Model: 7

coef std err z P>|z]| [0.025 0.975]
foreign 2.8968 0.791 3.664 0.000 1.347 4.446
length 0.0828 0.023 3.646 0.000 0.038 0.127
mpg 0.2308 0.070 3.275 0.001 0.093 0.369
1/2 17.9275 5.551 3.229 0.001 7.047 28.808
2/3 0.6614 0.300 2.203 0.028 0.073 1.250
3/4 0.8057 0.171 4.706 0.000 0.470 1.141
4/5 0.9512 0.218 4.360 0.000 0.524 1.379

For the cutoff points estimates,

cut_off_points = model.transform_threshold_params(result.params)
print(cut_off_points)

[-inf 17.92746199 19.86504069 22.10328917 24.6921089 inf]

Based on the estimation conducted above, I would find the following conclusions (note that this is
not the effects in the marginal sense):

o All three explanatory variables, “foreign,” “length,” and “mpg,” are highly statistically signif-
icant at conventional confidence levels. This indicates that these variables have a significant
relationship with the repair records of cars.

o On average, foreign cars have repair records that are 2.8 levels better than non-foreign cars.
This result suggests that being a foreign car is associated with a higher likelihood of better
durability.

o Additionally, the length of the car and its fuel efficiency (mpg) also significantly affect the
repair records. For every unit increase in car length, there is an expected increase in the repair
record level by 0.083, holding other variables constant. Similarly, for every unit increase in
mpg, the repair record level is expected to increase by 0.231, all else being equal.

4.2 Bootstrapped Standard Errors

Here, I attempt to compute bootstrapped standard errors using the following scripts. The bootstrap
algorithm follows the lecture materials delivered in this course, so formulae details are omitted.

Please notice that the bootstrap algorithm makes use of the sample with replacement. 1 find it is
easier to utilize Python’s machine learning module (sklearn.utils) to perform such resample.

import numpy as np
from sklearn.utils import resample

bootstrap_iterations = 1000
bootstrap_estimates = np.zeros((bootstrap_iterations, len(X.columns)))

14

[9]:

for i in range(bootstrap_iterations):
Resample the data
X_sample, y_sample = resample(X, y)

Fit the model and get the parameter estimates
model = OrderedModel(y_sample, X_sample, distr='logit')
result = model.fit(method='bfgs', disp=0)

Store the parameter estimates
bootstrap_estimates[i, :] = (result.params)[:3].values

Compute the standard errors
bootstrap_standard_errors = bootstrap_estimates.std(axis=0)

Print the results
for i, column in enumerate(X.columns):
print (f 'Bootstrap standard error for {column}:
~{bootstrap_standard_errors[i]}')

Bootstrap standard error for foreign: 0.9738380107392711
Bootstrap standard error for length: 0.029093106408630783
Bootstrap standard error for mpg: 0.11230855685709225

4.3 Codifying the MLE Manually in Python

Let av and 8 be vector parameters as defined in Section 1. Before continuing with the programming
for optimizations, I first write out the coding friendly representation of the objective function.
Define the log-likelihood function ¢ as

5

Lp,a) = Zn:ZIn (Pr(rep?7, = j|x;, B, a)) .

i=1 j=1

Mathematically equivalently, we have

n 5
B, a) = ZZ [I](rep??i < j)log(m;;) + 1(rep77, > j)log(1 — 771-]»)])

=1 j=1
where [(.) is an indicator function, and in specific,

. exp(a; — By foreign; — Bylength; — Bympg;)
1+ exp(a; — B foreign; — Bylength; — Bsmpg;)

7'['” = Pr(r€p77i S _7|X7,7 /B’ Oé)

The model parameters are estimated according to the the maximization of this log-likelihood func-
tion.

from scipy.optimize import minimize
from scipy.special import expit

15

Eztracting data

datal[['foreign', 'rep77']] = datal['foreign', 'rep77']].apply(pd.to_numeric)
foreign=datal'foreign'].values

rep77=datal'rep77'].values

length=datal['length'].values

mpg=datal'mpg'].values

Objective function -—— the negative of the log-likelihood
def ologit(theta):

Sorting parameters of betas

betal=thetal0]

beta2=thetal[1]

beta3=theta[2]

Linear combination
BX=foreign*betal+length*beta2+mpg*beta3

Sorting parameters of alphas
alphal=thetal[3]
alpha2=theta[4]
alpha3=thetal5]
alpha4=theta[6]

Cloning the dep. war.
optput=np.copy (rep77)

Computing the different parts of the log-likelihood
partO=(np.log(expit(alphal-BX[rep77==1])-expit(-np.inf-BX[rep77==1])))
parti=(np.log(expit(alpha2-BX [rep77==2])-expit (alphal-BX[rep77==2])))
part2=(np.log(expit(alpha3-BX [rep77==3])-expit(alpha2-BX[rep77==3])))
part3=(np.log(expit(alpha4-BX [rep77==4])-expit (alpha3-BX [rep77==4])))
part4=(np.log(expit(np.inf-BX[rep77==5])-expit (alpha4-BX[rep77==5])))
return -(partO.sum() + partl.sum() + part2.sum() + part3.sum() + parté.
~sum())

Perform optimization using minimize function
result = minimize(ologit, xO=np.array([2.8, 0.00, 0.29, 17, 19, 22, 24]))

print(result)

fun: 78.25071924594866
hess_inv: array([[6.72752859e-01, 1.15050056e-02, 1.18546668e-02, 2.51364525e+00,
2.54919414e+00, 2.65530318e+00, 2.80674775e+00],
[1.15050056e-02, 5.35599014e-04, 1.25469933e-03, 1.28353712e-01,
1.29989307e-01, 1.32596418e-01, 1.36131797e-01],

16

[1.18546668e-02, 1.25469933e-03, 5.21865331e-03, 3.44645321e-01,
3.48005498e-01, 3.54228063e-01, 3.65211314e-01],
[2.51364525e+00, 1.28353712e-01, 3.44645321e-01, 3.19641347e+01,
3.20713307e+01, 3.26532105e+01, 3.35505081e+01],
[2.54919414e+00, 1.29989307e-01, 3.48005498e-01, 3.20713307e+01,
3.24833865e+01, 3.30535280e+01, 3.39573863e+01],
[2.65530318e+00, 1.32596418e-01, 3.54228063e-01, 3.26532105e+01,
3.30535280e+01, 3.37738022e+01, 3.46812431e+01],
[2.80674775e+00, 1.36131797e-01, 3.65211314e-01, 3.35505081e+01,

3.39573863e+01, 3.46812431e+01, 3.59402038e+01]])
jac: array([-9.53674316e-07, 5.88607788e-03, 5.79833984e-04, -1.04904175e-05,
-2.09808350e-05, 8.58306885e-06, -9.53674316e-07])
message: 'Desired error not necessarily achieved due to precision loss.'
nfev: 473
nit: 22
njev: 57
status: 2
success: False
x: array([2.89676628, 0.08282575, 0.23076365, 17.92704828, 19.86462704,
22.10287117, 24.69168257])

Note that I chose the initial values close to the MLE. As described earlier, this model may encounter
numerical computing issues. Therefore, I will check the concavity of the objective function.
4.4 Python Chat Box for Plotting Likelihood Surfaces

Next script designs a Python chat box for users to interactively select the horizontal axis among
all Bs in the figure:

Here the user is allowed to choose which coeffictent to plot
estimated_parameter = input("Enter the coefficient you want to plot (betal, beta2 or beta3):

Initialize the beta values to the optimal values
beta_values = np.copy(result.x)

Set the range of wvalues for the selected beta

if estimated_parameter == 'betal':
beta_range = np.linspace(-5, 5, 100)
idx = 0O

elif estimated_parameter == 'beta2':
beta_range = np.linspace(0, 0.15, 100)
idx = 1

elif estimated_parameter == 'beta3':
beta_range = np.linspace(-0.5, 0.5, 100)
idx = 2

Store the likelihood for each wvalue
likelihood _values = []

17

for b in beta_range:
beta_values[idx] = b
likelihood_values.append(-ologit(beta_values))

plt.plot(beta_range, likelihood_values, label='Log-Likelihood Curve')

Calculate the likelihood at the optimal beta
optimal_likelihood = -ologit(result.x)

Add the optimal point to the plot
plt.scatter(result.x[idx], optimal_likelihood, color='red', label='Estimated ' + estimated_par

plt.xlabel('Value of ' + estimated_parameter)
plt.ylabel('Likelihood")

plt.title('Likelihood as a Function of ' + estimated_parameter)
plt.legend()

plt.show()

Enter the coefficient you want to plot (betal, beta2 or beta3): []

[22]: # (repeated code omitted)

Enter the coefficient you want to plot (betal, beta2 or beta3): beta2

Likelihood as a Function of beta2

—— Log-Likelihood Curve
® Estimated betaz
=200 -
—400 -
=
o
o
=
w
=t
= —600 1
—800 -

T T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Value of betaz

18

[21]: # (repeated code omitted)
Enter the coefficient you want to plot (betal, beta2 or beta3): beta3

Likelihood as a Function of beta3

—— Log-Likelihood Curve
® Estimated beta3
=200 -
—400 -
=
o
o
=
w
=t
— _600 -
—800 -

T T
-0.4 -0.2 0.0 0.2 0.4
Value of beta3

4.5 Python-Stata Integrations

We can also use Stata to generate the same estimation.
[12]: stata.run('''

ologit rep77 foreign length mpg
|||)

. use "fullauto.dta"

(Automobile Models)

ologit rep77 foreign length mpg

19

Iteration O: log likelihood = -89.895098
Iteration 1: log likelihood = -78.775147
Iteration 2: log likelihood = -78.254294
Iteration 3: log likelihood = -78.250719
Iteration 4: log likelihood = -78.250719
Ordered logistic regression Number of obs = 66
LR chi2(3) = 23.29
Prob > chi2 = 0.0000
Log likelihood = -78.250719 Pseudo R2 = 0.1295
rep77 | Coefficient Std. err. z P>|z]| [95% conf. intervall
_____________ +__
foreign | 2.896807 .7906411 3.66 0.000 1.347179 4.446435
length | .0828275 .02272 3.65 0.000 .0382972 .1273579
mpg | .2307677 .0704548 3.28 0.001 .0926788 . 3688566
_____________ +__
/cutl | 17.92748 5.551191 7.047344 28.80761
/cut2 | 19.86506 5.59648 8.896161 30.83396
/cut3 | 22.10331 5.708936 10.914 33.29262
/cutd | 24.69213 5.890754 13.14647 36.2378
Also, I compute the marginal effects. This task is easier to do in Stata, for instance,
[13]: stata.run('''mfx''")
Marginal effects after ologit
y = Pr(rep77==1) (predict)
= .02707434
variable | dy/dx Std. err z P>lz| [95% C.I] X
_________ +-————————rrrrrrrrrrrrrrrrrrrrrrr -
foreign*x| -.0615285 03648 -1.69 0.092 -.133028 .009971 .318182
length | -.0021818 00131 -1.66 0.096 -.004754 .00039 189.121
mpg | -.0060787 00378 -1.61 0.108 -.01349 .001333 21.3333

(*) dy/dx is for discrete change of

Edited by Zizhong Yan

20

dummy variable from O to 1

	Introduction
	Main Focus and Dataset
	Econometric Methods
	Challenges in Python Programming

	Data Cleaning
	Descriptive Analysis
	Python-Stata Integration

	Econometric Analysis
	Using statsmodels Commands
	Bootstrapped Standard Errors
	Codifying the MLE Manually in Python
	Python Chat Box for Plotting Likelihood Surfaces
	Python-Stata Integrations

